Search results for "Zero mode"

showing 5 items of 5 documents

Low-energy couplings of QCD from topological zero-mode wave functions

2003

By matching 1/m^2 divergences in finite-volume two-point correlation functions of the scalar or pseudoscalar densities with those obtained in chiral perturbation theory, we derive a relation between the Dirac operator zero-mode eigenfunctions at fixed non-trivial topology and the low-energy constants of QCD. We investigate the feasibility of using this relation to extract the pion decay constant, by computing the zero-mode correlation functions on the lattice in the quenched approximation and comparing them with the corresponding expressions in quenched chiral perturbation theory.

Quantum chromodynamicsPhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsZero modeChiral perturbation theoryHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FísicaFOS: Physical sciencesParticle Physics - LatticeQuenched approximationDirac operatorTopologyPseudoscalarsymbols.namesakelattice QCDHigh Energy Physics - LatticeHigh Energy Physics - Theory (hep-th)nonperturbative effectssymbolschiral lagrangiansPion decay constantWave function
researchProduct

Determination of the ΔS=1 weak Hamiltonian of the SU(4) chiral limit through topological zero-mode wave functions

2008

38 pages, 9 figures.-- Published in: JHEP05(2008)043, available at: http://dx.doi.org/10.1088/1126-6708/2008/05/043 (open-acess).

PhysicsNuclear and High Energy PhysicsZero modeChiral perturbation theoryHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyFísicaObservableLattice QCDTopologyweak decaysCharm quarkPseudoscalarsymbols.namesakeHigh Energy Physics - Phenomenologylattice QCDHigh Energy Physics - Latticekaon physicssymbolsHamiltonian (quantum mechanics)Wave function
researchProduct

Distinguishing Majorana Zero Modes from Impurity States through Time-Resolved Transport

2019

We study time-resolved charge transport in a superconducting nanowire using time-dependent Landauer-B{\"u}ttiker theory. We find that the steady-state Majorana zero-bias conductance peak emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These oscillations are absent for a trivial impurity state that otherwise shows a very similar steady-state signal as the Majorana zero mode. In addition, we find that Andreev bound states or quasi-Majorana states in the topologically trivial bulk phase can give rise to a zero-bias conductance peak, also retaining the transient properties of the Majorana zero mode. Our results imply that (1) time-resolved transport m…

SuperconductivityPhysicsSettore FIS/03Zero modeCondensed Matter - Mesoscale and Nanoscale PhysicssuprajohtavuusCondensed matter physicsPhase (waves)General Physics and AstronomyConductanceFOS: Physical sciencesCharge (physics)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesTopological quantum computerPhysics::History of Physics010305 fluids & plasmasMAJORANAnanorakenteet0103 physical sciencesBound stateMesoscale and Nanoscale Physics (cond-mat.mes-hall)kvanttifysiikka010306 general physics
researchProduct

On Central Charges and Hamiltonians for 0-brane dynamics

1999

We consider general properties of central charges of zero branes and associated duality invariants, in view of their double role, on the bulk and on the world volume (quantum-mechanical) theory. A detailed study of the BPS condition for the mass spectrum arising from toroidal compactifications is given for 1/2, 1/4 and 1/8 BPS states in any dimensions. As a byproduct, we retreive the U-duality invariant conditions on the charge (zero mode) spectrum and the orbit classification of BPS states preserving different fractions of supersymmetry. The BPS condition for 0-branes in theories with 16 supersymmetries in any dimension is also discussed.

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsZero modeSupergravityFOS: Physical sciencesDuality (optimization)FísicaCharge (physics)SupersymmetryTheoretical physicsHigh Energy Physics::TheoryHigh Energy Physics - Theory (hep-th)Physics::Plasma PhysicsQuantum mechanicsBraneOrbit (control theory)Invariant (mathematics)Mathematics::Symplectic GeometryParticle Physics - Theory
researchProduct

Gauge-invariant condensation in the nonequilibrium quark-gluon plasma

2020

The large density of gluons, which is present shortly after a nuclear collision at very high energies, can lead to the formation of a condensate. We identify a gauge-invariant order parameter for condensation based on elementary non-perturbative excitations of the plasma, which are described by spatial Wilson loops. Using real-time lattice simulations, we demonstrate that a self-similar transport process towards low momenta builds up a macroscopic zero mode. Our findings reveal intriguing similarities to recent discoveries of condensation phenomena out of equilibrium in table-top experiments with ultracold Bose gases.

PhysicsCondensed Matter::Quantum GasesNuclear collisionZero mode010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Non-equilibrium thermodynamicsFOS: Physical sciencesPlasmaInvariant (physics)hiukkasfysiikka01 natural sciences3. Good healthGluonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeQuantum Gases (cond-mat.quant-gas)Lattice (order)Quantum electrodynamics0103 physical sciencesQuark–gluon plasma010306 general physicsCondensed Matter - Quantum GasesPhysical Review D
researchProduct