Search results for "Zero mode"
showing 5 items of 5 documents
Low-energy couplings of QCD from topological zero-mode wave functions
2003
By matching 1/m^2 divergences in finite-volume two-point correlation functions of the scalar or pseudoscalar densities with those obtained in chiral perturbation theory, we derive a relation between the Dirac operator zero-mode eigenfunctions at fixed non-trivial topology and the low-energy constants of QCD. We investigate the feasibility of using this relation to extract the pion decay constant, by computing the zero-mode correlation functions on the lattice in the quenched approximation and comparing them with the corresponding expressions in quenched chiral perturbation theory.
Determination of the ΔS=1 weak Hamiltonian of the SU(4) chiral limit through topological zero-mode wave functions
2008
38 pages, 9 figures.-- Published in: JHEP05(2008)043, available at: http://dx.doi.org/10.1088/1126-6708/2008/05/043 (open-acess).
Distinguishing Majorana Zero Modes from Impurity States through Time-Resolved Transport
2019
We study time-resolved charge transport in a superconducting nanowire using time-dependent Landauer-B{\"u}ttiker theory. We find that the steady-state Majorana zero-bias conductance peak emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These oscillations are absent for a trivial impurity state that otherwise shows a very similar steady-state signal as the Majorana zero mode. In addition, we find that Andreev bound states or quasi-Majorana states in the topologically trivial bulk phase can give rise to a zero-bias conductance peak, also retaining the transient properties of the Majorana zero mode. Our results imply that (1) time-resolved transport m…
On Central Charges and Hamiltonians for 0-brane dynamics
1999
We consider general properties of central charges of zero branes and associated duality invariants, in view of their double role, on the bulk and on the world volume (quantum-mechanical) theory. A detailed study of the BPS condition for the mass spectrum arising from toroidal compactifications is given for 1/2, 1/4 and 1/8 BPS states in any dimensions. As a byproduct, we retreive the U-duality invariant conditions on the charge (zero mode) spectrum and the orbit classification of BPS states preserving different fractions of supersymmetry. The BPS condition for 0-branes in theories with 16 supersymmetries in any dimension is also discussed.
Gauge-invariant condensation in the nonequilibrium quark-gluon plasma
2020
The large density of gluons, which is present shortly after a nuclear collision at very high energies, can lead to the formation of a condensate. We identify a gauge-invariant order parameter for condensation based on elementary non-perturbative excitations of the plasma, which are described by spatial Wilson loops. Using real-time lattice simulations, we demonstrate that a self-similar transport process towards low momenta builds up a macroscopic zero mode. Our findings reveal intriguing similarities to recent discoveries of condensation phenomena out of equilibrium in table-top experiments with ultracold Bose gases.